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ABSTRACT

Analysis of RNA sequencing (RNA-seq) data from
related individuals is widely used in clinical and
molecular genetics studies. Prediction of kinship
from RNA-seq data would be useful for confirming
the expected relationships in family based studies
and for highlighting samples from related individu-
als in case-control or population based studies. Cur-
rently, reconstruction of pedigrees is largely based
on SNPs or microsatellites, obtained from genotyp-
ing arrays, whole genome sequencing and whole ex-
ome sequencing. Potential problems with using RNA-
seq data for kinship detection are the low proportion
of the genome that it covers, the highly skewed cov-
erage of exons of different genes depending on ex-
pression level and allele-specific expression. In this
study we assess the use of RNA-seq data to detect
kinship between individuals, through pairwise iden-
tity by descent (IBD) estimates. First, we obtained
high quality SNPs after successive filters to minimize
the effects due to allelic imbalance as well as errors
in sequencing, mapping and genotyping. Then, we
used these SNPs to calculate pairwise IBD estimates.
By analysing both real and simulated RNA-seq data
we show that it is possible to identify up to second
degree relationships using RNA-seq data of even low
to moderate sequencing depth.

INTRODUCTION

RNA sequencing is used in genetics for a variety of pur-
poses such as to test the heritability of gene expression traits
(1), to search for mutations causing mendelian disorders

(2), to understand the effects of disease-associated muta-
tions (e.g. (3)), to study the mechanisms of epigenetic in-
heritance of phenotypic traits (4), among others. In these
studies, multiple RNA samples are extracted from differ-
ent related or unrelated individuals and they are processed
in parallel. Knowing whether samples are from related in-
dividuals and their exact relationship is important. For ex-
ample, in family studies, matching samples to individuals
in a pedigree allows the correct association of phenotypic
traits to expression patterns. In case-control gene expres-
sion studies, the inclusion of samples from related individ-
uals leads to a mis-specified covariance structure and there-
fore an inflated type-1 error rate when testing for associa-
tion. Knowing the true relatedness of the samples allows
researchers to remove unwanted related samples or use a
method that models expression taking into account relat-
edness. In population studies, biased recruitment schemes
can enrich datasets with cryptic relationships (5). This is a
common scenario in association analyses and it could also
happen for RNA-seq collections from unrelated individu-
als. Currently, researchers check the correctness of RNA-
seq sample relatedness indirectly because it is so far un-
clear whether kinship can be detected directly from RNA-
seq data.

During sample and data processing, sample mislabeling
can occur due to human error. This is detrimental for down-
stream analysis, especially for family studies, and has been
estimated to affect at least 4% of published samples (6,7).
Given the importance and pervasiveness of this problem,
there are numerous programs and methodologies that deal
with sample mislabeling in sequencing data by compar-
ing paired samples from the same individual (8–11), com-
paring the annotated sex with expression of sex-specific
genes (12) or using a heuristic data perturbation strategy
(7). From genotyping, whole genome sequencing (WGS)
and whole exome sequencing (WES) datasets, there are nu-
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merous methods that can predict kinship from single nu-
cleotide polymorphisms (SNPs) and confirm that samples
correspond to the labelled individuals in a pedigree or that
they are genetically unrelated. However, none of these meth-
ods sufficiently address labeling mix-ups or unreported re-
latedness of samples when only RNA-seq data is available,
for each individual. Furthermore, for researchers interested
in analyzing only expression data, current methods require
them to retrieve and process in parallel at least one addi-
tional data file (WGS, WES or genotyping array data) per
individual, so as to confirm that RNA-seq and DNA se-
quencing data contain the same nucleotide variants and
then use the DNA sequencing data to extract genotypes
from which to confirm kinship. Even when available, the re-
trieval and analysis of WGS or WES just to check for errors
in RNA-seq sample relatedness is a cumbersome and often
very time consuming task.

There are several methods to predict or confirm familial
relationships and build heritability estimates from genetic
data. Although these methods were initially based on mi-
crosatellites (13) and amplified fragment length polymor-
phism (AFLPs) (14), nowadays they usually rely on SNPs.
Among the different methodologies for kinship detec-
tion, we can find methods that exclude impossible parent-
offspring relationships (15–17), methods that calculate kin-
ship coefficients and/or identical-by-descent (IBD) proba-
bilities (18,19) and likelihood methods (20,21). RNA-seq
data can be used to identify SNPs (22). Yet, the use of RNA-
seq data for kinship detection and pedigree reconstruction
has not been properly assessed so far. Some of the concerns
with using this type of data for kinship detection are the
limited number of SNPs adequately covered by reads and
allelic imbalance (23,24) that may hinder genotype calling
by masking one of the two alleles at many variant positions
along the genome.

Here, we report the results of our assessment of the utility
of human RNA-seq data for kinship detection and pedigree
reconstruction. Our input data is a set of raw RNA-seq data
files and a set of known common variant positions. First, we
filter both the RNA-seq data and the known variants to ob-
tain reliable predicted genotypes at common variant posi-
tions for each RNA sample. We then use the predicted geno-
types to detect and represent familial relationships by esti-
mating pairwise probabilities of identity-by-descent (IBD)
(18,25). By analysing human empirical as well as simulated
RNA-seq data we show that the estimated IBD probabil-
ities allow kinship detection and pedigree reconstruction,
detecting up to second degree relationships even with low
sequencing depth. We propose kinship detection directly
from RNA-seq data as a simple and direct method to de-
tect sample relatedness.

MATERIALS AND METHODS

Retrieval of empirical data

We used three types of empirical data (Figure 1, Supplemen-
tary Table S1). First, we used previously published RNA-
seq data from four different studies that include transcrip-
tome sequencing from a 17-member, three-generation fam-
ily (26), transcriptome sequencing from a trio (3), transcrip-
tome sequencing from a pair of first degree relatives and

two unrelated individuals (27) as well as targeted transcript
sequencing (Ion AmpliSeq, Life Technologies) from 7 un-
related individuals and a pair of siblings (28). Second, we
retrieved genetic variation data from six pairs of first and
second degree relatives from the CDX population of the
1000 Genomes Project (29). From this data we then sim-
ulated RNA-seq reads (the method of simulation of RNA-
seq reads is described below). Third, we retrieved genetic
variation data from unrelated individuals from the 1000
Genomes Project (29) from which we simulated families (the
method of simulation of genotypes of family members is de-
scribed below) and RNA-seq reads.

Simulation of genotypes of family members

To simulate the genotypes of family members we used SNP
data from the 1000 Genomes Project (29). We selected unre-
lated individuals as founders and used their haplotype data
to simulate the rest of the family. We simulated data ac-
cording to different pedigrees in order to assess the effect
of pedigree complexity. Family simulations were carried out
following Mendelian laws and taking into account linkage
disequilibrium (assuming 1 cM per Mb) with a custom R
script.

Simulation of RNA-seq reads

To simulate gene expression data from real or simulated
individuals, we generated paired-end RNA-seq reads with
flux-simulator v1.2.1 (30). We used two genome fasta files
per individual (one per haplotype, including the SNPs to
the reference genome with GATK v3.8 FastaAlternateRef-
erenceMaker (31)) and the expression profile of B lympho-
cytes (custom .pro file with RPKMx150 obtained from the
founders of CEPH/UTAH family 1463 (26) to get a se-
quencing depth of 40M reads per individual). We ran the
simulation with library preparation and sequencing steps (-
ls options) for the first haplotype. For the second haplotype
we used the library (.lib file) of the first haplotype and ran
only the sequencing step (-s option) to make sure the same
genes are expressed in both haplotypes.

Data filtering, read mapping and kinship detection

We aligned empirical and simulated RNA-seq reads to the
reference genome hg19 using HISAT2 v2.1.0 (32). For map-
ping, we used the HISAT2 index for the human reference
genome plus transcripts retrieved from ftp://ftp.ccb.jhu.edu/
pub/infphilo/hisat2/data/grch37 tran.tar.gz (accessed: Nov
8, 2018). We then used SAMtools to remove duplicates
(command markdup). We retrieved 14.8 million (M) com-
mon SNPs from the UCSC Genome Browser (dbSNP Build
ID 150) (33). We used BEDtools intersect v2.26.0 (34) to
identify and remove 38,572 SNPs in 83 imprinted genes
(http://www.geneimprint.org/ accessed: 8 March 2018) and
8.2 M SNPs in repeats (RepeatMasker annotation down-
loaded from the UCSC Genome Browser), ending up with
6.2 M SNPs. Genotypes were obtained with SAMtools
mpileup v1.7 (options -A -q 4 -t AD,DP) (35) and BCFtools
call v1.4 (options -m - -O b -f GQ) (36), using uniquely
mapping reads only. We used VCFtools v0.1.14 (36) to se-
lect only those SNPs with a depth ≥ 10 (option –minDP
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Figure 1. Overview of data workflow for kinship detection and pedigree reconstruction using RNA-seq data. GQ: genotype quality, DP:depth, IBD:
identity by descent, MAF: minor allele frequency.

10) and a genotype quality ≥ 20 (option –minGQ 20). To
assess the accuracy of genotype prediction from RNA-seq
data, we retrieved high confidence variant calls for two indi-
viduals of CEPH/UTAH family 1463 (the two offspring of
the four founders in the pedigree shown in Figure 2A) (37).
The effect of the different SNP filtering steps on the num-
ber of variants considered for IBD estimation, the accu-
racy of genotype prediction (for individuals NA12877 and
NA12878 of CEPH/UTAH family 1463), kinship detection
and pedigree reconstruction is shown in Supplementary Ta-
ble S2.

To determine pairwise IBD estimates we used PLINK
v1.9 (38), considering only autosomal SNPs with a minor
allele frequency ≥0.3 (–maf 0.3 option) to obtain an opti-
mal separation between groups. Use of a higher minor al-
lele frequency threshold led to high deviation of Z0, Z1 and
Z2 from the theoretical values (Supplementary Figure S1).
Representation of pairwise IBD estimates was done in R
v3.5.0 (39) with the method described by Galván-Femenı́a
et al. (40). Using the IBD estimates obtained in the previous
step, we used PRIMUS v1.9.0 (41) to predict pairwise rela-
tionships and to reconstruct the whole pedigree, consider-
ing as unrelated those pairs of individuals with a coefficient
of relatedness lower than 0.2 (option -t 0.2). Sex data was
also provided. The sex of the individuals from the real data
was inferred from counting reads mapping on the Y chro-
mosome and compared against the reported sex.

A

C

B

Figure 2. Structure of datasets used for the assessment of kinship detection
using RNA-seq data. (A) Structure of the extended CEPH/UTAH family
1463 with empirical RNA-seq data (26). Additional empirical RNA-seq
datasets are included in Supplementary Figure S2. (B) List of real related
pairs of individuals with simulated RNA-seq data. (C) Simulated fami-
lies with simulated RNA-seq data (pedigree types 1–4). Real individuals
with simulated RNA-seq data are highlighted in grey. Simulated individu-
als with simulated RNA-seq data are highlighted in black.
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RESULTS

Analysis workflow for kinship detection using RNA-seq from
related individuals

To assess how feasible it is to detect kinship using RNA-seq
data we used three types of data (Figures 1 and 2). First, we
used six previously published sets of RNA-seq data from
related and unrelated individuals from four different stud-
ies that include samples from an extended three-generation
human family (26) (Figure 2A). Second, we used available
SNP data from six pairs of first and second degree relatives
from the CDX population of the 1000 Genomes Project
(29) from which we simulated RNA-seq data (Figure 2B).
Third, we used available SNP data from unrelated individ-
uals from the 1000 Genomes Project (29) from which we
simulated the genotypes of family members and the corre-
sponding RNA-seq samples (Figure 2C). We simulated four
types of pedigrees to assess the effect of pedigree complexity.
After data retrieval or simulation, we used the same analysis
workflow which in brief consisted of mapping and filtering
RNA-seq reads, calling and filtering genotypes of a set of
filtered SNPs, calculating IBD estimates and finally visual-
izing the IBD estimates in ternary diagrams or providing
the IBD estimates to the software PRIMUS for prediction
of pairwise relationships and pedigree reconstruction.

Kinship detection using empirical human RNA-seq data

We mapped and filtered the raw RNA-seq data from B-
lymphocytes from members of the CEPH/UTAH family
1463 (26) and in parallel filtered the initial set of known
common human variants as described in the methods.
Reads were mapped to the reference human genome. This
step excluded on average 12% of the initial reads (range
6–24%, depending on the individual) that could not be
mapped. We then removed PCR duplicates as they can po-
tentially amplify sequencing errors. This step led to the re-
moval of an average of 21% of the reads (range 17–30%).
We also removed multi-mapping reads to avoid mapping
errors, excluding on average 4.6% of the reads (range 4.1–
5.3%). We filtered the known common human variants; we
removed SNPs in repeats and in imprinted genes (55% and
0.26% of SNPs excluded, respectively) that could bias geno-
typing. Having obtained a filtered set of RNA-seq reads (a
mean of 34M reads per individual) and SNPs (6.2 M SNPs),
we proceeded to call and filter genotypes, obtaining 633,636
SNPs that were covered by reads in at least one individual.
To exclude those SNPs with low coverage we selected a min-
imum depth of 10 reads per SNP, and to avoid genotyping
errors we filtered out those SNPs with a genotype quality
lower than 20, which means an error rate of 0.01 (in this step
we excluded 76% of the SNPs). Finally, we considered those
SNPs with a minor allele frequency of at least 0.3 (exclud-
ing 89.5% of the SNPs). We ended the filtering process with
16,004 SNPs present in at least one individual. The num-
ber of SNPs shared between pairs of individuals that were
used for downstream analyses was between 5,657 and 8,600,
depending on the number of missing genotypes observed
for each pair of individuals. High confidence variant calls
are available for two individuals (individuals with identifiers
NA12877 and NA12878) of the CEPH/UTAH family 1463

that we have analysed. These high confidence variant calls
agreed with those predicted from RNA-seq data using our
pipeline at 99.3% and 98.8% of the common variant posi-
tions that passed all filters.

We used ternary diagrams to visualize the estimated
probabilities of sharing 0, 1 and 2 IBD alleles (referred here
as Z0, Z1 and Z2 respectively) meaning that none, only one
or both alleles of the pair are inherited from the same recent
common ancestor. In ternary diagrams, the coordinates of
each data point are the three IBD estimates for each pair
of individuals in the dataset. We observed that the differ-
ent relationships were grouped around their theoretical val-
ues with no overlap between them. As expected, parent-
offspring pairs are clustered at the Z1 corner (meaning that
they share 1 IBD allele at all SNPs), unrelated individuals
at the Z0 corner (they do not share any IBD alleles), second
degree relationships on the Z0-Z1 axis (they share 1 IBD al-
lele at half of their SNPs) and full-siblings in the middle of
the graph (they can share from 0 to 2 IBD alleles per SNP)
(Figure 3A, Supplementary Table S3).

The actual pedigree was also correctly reconstructed with
PRIMUS (41) from the estimated IBD values. In addition
to the top scoring pedigree, which in this case corresponds
to the correct one, PRIMUS also reports the predicted pair-
wise relationships. In this case it did not correctly identify
some of the pairwise relationships; the mis-identified pairs
were 2% of full sibling pairs (one pair was classified as sec-
ond degree relatives), 32% of second degree pairs and 9% of
unrelated pairs of individuals.

In addition to the data from the 17-member family, we
assessed kinship detection for a family trio (mother, father,
daughter) using transcriptome sequencing data from car-
diomyocytes differentiated from induced pluripotent stem
cells (3), for a parent-offspring pair and unrelated indi-
viduals using transcriptome sequencing data from whole
blood and peripheral blood mononuclear cells (27) and for
a pair of siblings and seven unrelated individuals using tar-
geted RNA sequencing from naive CD4+ T-cells and LPS-
stimulated monocytes (28) (Supplementary Figure S2A–E).
For whole transcriptome sequencing, the number of SNPs
used for pairwise comparisons and IBD estimation ranged
from 1,311 to 5,876 SNPs, depending on the pair of in-
dividuals analysed. For targeted RNA-seq samples, gener-
ated using the Ion AmpliSeq Transcriptome Human Gene
Expression Kit (Life Technologies) that targets on aver-
age 150 bp per human gene, the number of SNPs cov-
ered and passing all filters were significantly fewer, as ex-
pected. Specifically, from Ion AmpliSeq data, the number
of SNPs used for pairwise comparisons and IBD estima-
tion ranged between 95 and 193. Samples from related indi-
viduals (parent-offspring pairs and siblings) are clearly sep-
arated from replicates (tightly clustering at the Z2 corner)
and from unrelated individuals in all datasets, including in
the targeted RNA-seq datasets (Supplementary Figure S2).
In these datasets, although samples from unrelated individ-
uals are clearly separated from samples from first-degree
relatives, their IBD estimates are further from their theo-
retical values, something that was improved by removing
replicates (data not shown). Relatedness was correctly in-
ferred by PRIMUS, however for the transcriptome sequenc-
ing data from whole blood and the targeted RNA-seq data
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A B C

Figure 3. Ternary diagrams of IBD estimates for (A) CEPH/UTAH family 1463, (B) simulated RNA-seq data from real related pairs of individuals and
(C) simulated RNA-seq data from simulated related individuals from different pedigree types (type 1–type 4). Note that in ternary diagrams data points
that have very similar Z0, Z1 and Z2 values overlap and may not be visible. Ternary diagrams for five additional empirical RNA-seq datasets are shown in
Supplementary Figure S2.

from peripheral blood mononuclear cells other high scoring
pedigrees were also suggested.

According to these results, we can conclude that kinship
detection is possible with RNA-seq data, allowing us to de-
tect and represent first and second degree relationships. Al-
though the sensitivity decreases as the degree of relatedness
increases, pedigree reconstruction is robust. As an indica-
tion of the time required to perform kinship detection, the
full RNA-seq analysis of nine samples from the trio (fa-
ther, mother and offspring with three replicates per individ-
ual from (3)) took 110 min using an Intel(R) Xeon(R) W-
2145 CPU 3.70GHz workstation with eight cores and 64GB
of memory (parallel processing was used only for mapping
reads). This includes the time needed to map the raw reads
(∼45 min).

Impact of sequencing depth on kinship detection

The sequencing depth of the real RNA-seq data from the ex-
tended human family ranged from 37M to 67M reads, with
a mean depth of 52M. To understand the effect of sequenc-
ing depth on kinship detection, we randomly subsampled
different numbers of reads from the FASTQ input files. We

subsampled 37M reads (the number of reads for the individ-
ual with the lowest coverage) to homogenize the sequencing
depth for all individuals and then also 30M, 20M, 10M, 8M,
6M, 4M and 2M reads from each sample to determine the
minimum sequencing depth for kinship detection and pedi-
gree reconstruction.

Visual inspection of estimated probabilities using ternary
diagrams (Figure 4) revealed that there was no overlap
between second degree relatives and unrelated individuals
when using RNA-seq data with 52M, 37M, 30M, 20M,
10M and 6M reads. In the simulation of 8M reads we ob-
served a slight overlap between second degree relatives and
unrelated individuals. In the simulation of 4M reads, there
was overlap between second degree and unrelated pairs of
individuals and also between second degree and full sib-
lings. With 2M reads all groups overlapped except parent-
offspring and unrelated pairs of individuals.

Pedigree reconstruction was only possible for RNA-seq
data with 52M, 37M, 30M and 20M reads because, when
decreasing the sequencing depth, the probability to share
one IBD allele (Z1) of some full siblings decreased way be-
low the expected values (e.g. Z0 = 0.6741, Z1 = 0.0712, Z2
= 0.2547).
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Figure 4. Ternary diagrams of IBD estimates for each sequencing depth
(top) and number of SNPs used for pairwise comparison per sequencing
depth (bottom). Green color indicates that the pedigree was correctly re-
constructed, yellow colour indicates that there was no overlapping between
groups but the pedigree reconstruction was not possible, and red color in-
dicates that there was an overlapping between groups. The box with a se-
quencing depth of 52 is the one for the original data, being the mean for
the different sequencing depths (from 37M to 67M reads).

Taken together, these results demonstrate that sequenc-
ing depth affects the number of SNPs used for pairwise
comparison, but overall its effect on kinship detection is
small, providing acceptable IBD estimates (no overlapping
between relationships) even with 6M reads, where the num-
ber of SNPs is as low as 811–1,282 (Figure 4). As IBD es-
timates with 8M reads were not as good, we conclude that
the minimum sequencing depth to be able to detect kinship
in RNA-seq data through IBD probabilities is 10M reads.
In contrast, the minimum sequencing depth to be able to
reconstruct the correct pedigree is 20M reads.

Kinship detection using empirical genotypes of related indi-
viduals with simulated RNA-seq data

To further assess the feasibility of estimating relationships
from RNA-seq samples from related individuals, we sim-
ulated RNA-seq data from real related individuals with
known genotypes. We used variation data from six pairs

of first and second degree relatives from the CDX popu-
lation of the 1000 Genomes Project (Figure 2B). We simu-
lated paired-end RNA-seq reads with the expression profile
of B-lymphocytes. We obtained this gene expression pro-
file from the mean of the number of reads mapped to a
gene per gene length in kilobases per million mapped reads
(RPKM) of the founders of the CEPH/UTAH family 1463.
Then, we multiplied those values by a factor of 150 to sim-
ulate the desired expression profile with a sequencing depth
of 40M reads. As expected, the simulated RNA-seq data is
highly correlated with the real data (Supplementary Figure
S3)––Pearson’s correlation estimates are on average 0.918
(range 0.913–0.925). We used the same workflow described
for the empirical RNA-seq data. The resulting number of
SNPs used for the pairwise comparisons was between 4,501
and 4,632.

In agreement with the results obtained from the real
RNA-seq data, visual inspection of estimated probabili-
ties in ternary diagrams revealed that all relationships are
clearly separated (Figure 3B). Similarly, the pedigree recon-
struction program was able to correctly classify and repre-
sent all relationships in a pedigree. We conclude that kin-
ship detection using RNA-seq data is possible using differ-
ent datasets; for entire families as well as for pairs of related
individuals.

Kinship detection using simulated genotypes of family mem-
bers with simulated RNA-seq data

We then asked whether the complexity of the pedigree could
affect kinship detection and pedigree reconstruction. To ad-
dress this, we generated additional RNA-seq data from dif-
ferent types of pedigrees, this time simulating both gene ex-
pression and also the genotypes of individuals in the pedi-
grees. We used genotypes of real unrelated individuals from
the 1000 Genomes Project as founders (29) (Figure 2C,
genotypes of real individuals shown in gray, simulated geno-
types of offspring shown in black). We simulated families
using data from eight different populations from the 1000
Genomes Project: GBR, KHV, IBS, LWK, CLM, CDX,
PEL and ACB; and four pedigree structures including dif-
ferent degrees of relationship (Figure 2C):

Type 1: A 16-member pedigree with the same relationships
as CEPH/UTAH family 1463.

Type 2: A 16-member pedigree with all first and second de-
gree relationships from Supplementary Table S3.

Type 3: A 16-member pedigree with first, second and third
degree relationships.

Type 4: A 12-member pedigree with all first, second and
third degree relationships from Supplementary Table S3.

We made 32 simulations, one for each pedigree type and
population. Sex was not simulated as sex chromosomes are
not used for IBD estimation. After data filtering, we ob-
served that the number of SNPs used for pairwise compar-
ison was higher in African populations (ACB and LWK)
ranging from 5,180 to 5,974 and lower in Asian popula-
tions (KHV and CDX) ranging from 4,289 to 5,084 (Figure
5B). To further assess the accuracy of our genotype predic-
tion pipeline, we compared the genotypes of individuals in a
simulated pedigree (type 4 pedigree with founders from IBS
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A B

Figure 5. Pedigree reconstruction using RNA-seq data. (A) The matrices show the correctly reconstructed simulated pedigrees with our default workflow
(left panel), with five additional unrelated individuals (middle panel) and with a higher relatedness cutoff (0.375 instead of 0.2) (right panel). (B) The
boxplots summarize the distributions of the number of SNPs used for pairwise comparisons and IBD estimation for each pair of individuals in each
simulated pedigree.

population) to the predicted genotypes and found them to
agree at 98.3–99.2% of the common variant sites that passed
all filters.

Visual inspection of IBD probabilities (Figure 3C) re-
vealed that first degree relationships were clearly separated
from other relationships, second degree relationships were
separated from unrelated individuals in all simple pedigrees
(type 1 simulated pedigrees) and some type 2, 3 and 4 simu-
lated pedigrees. In contrast, third degree relationships over-
lapped unrelated pairs of individuals in all pedigrees where
they were present (Figure 3C, pedigree type 3–type 4).

Reconstruction of the actual pedigree was possible for
all simulated type 1 pedigrees, seven type 2 pedigrees and
four type 4 pedigrees (one of them was not the top scoring
one, but the fourth in the PRIMUS output), but for none
of the type 3 pedigrees (Figure 5A, left panel). Although
PRIMUS was not able to reconstruct all the simulated pedi-
grees, it was able to identify all first degree relatives, 35% of
second degree relatives (in type 1 pedigrees this percentage
was 68%), 12% of third degree relatives, and 93% of unre-
lated individuals (Supplementary Figure S4).

We conclude that family structure affects kinship detec-
tion, providing good IBD estimates for simple families with
up to second degree relatives, but in pedigrees with third
degree relatives there is overlap between different relation-
ships. Accordingly, entire pedigree reconstruction works
better for simple families, getting worse when the number
of third degree related pairs increases (type 3 pedigree has
25 pairs of third degree related individuals while type 4 pedi-
gree has six). Population specific differences in genetic vari-
ability lead to different number of SNPs that pass all filters,
however these differences do not affect the results.

We wondered whether the addition of unrelated individ-
uals would improve kinship detection. Presumably, they in-
clude more variability and make related individuals look
more similar to each other. To test this, we added five un-
related individuals from the same population to each simu-
lated family. The result was just as good for all families that
were previously correctly reconstructed but it improved for

four families, reconstructing correctly all type 1, seven type
2, all type 4 pedigrees but none of type 3 (Figure 5A, Mid-
dle Panel). We conclude that adding data from unrelated
individuals would be useful in those cases where the recon-
struction is not possible.

We asked whether it was possible to correctly predict the
pedigree structure using only the most related individuals
in complex pedigrees by using a stricter relatedness cutoff.
We reran PRIMUS with a higher relatedness cutoff (option
-t 0.375, instead of the previously used -t 0.2) and found
that type 1 and type 2 pedigrees were reconstructed equally
well but also that seven out of eight type 3 pedigrees and all
type 4 pedigrees could also be correctly reconstructed (Fig-
ure 5A, right panel). We conclude that a more restrictive
relatedness cutoff works better than adding unrelated indi-
viduals in those cases where most or all of the individuals of
the pedigree are connected through a first degree relative.

Last, we tested whether IBD estimation and kinship de-
tection could be used to identify RNA-seq samples from re-
lated individuals in a dataset consisting mostly of samples
from unrelated individuals. To test this we retrieved geno-
types for twenty unrelated individuals of the IBS popula-
tion from the 1000 Genomes Project (29) (Supplementary
Table S1) and we used them to simulate RNA-seq data as
done previously. We then generated five different RNA-seq
datasets, each consisting of the twenty simulated RNA-seq
samples from unrelated individuals from the 1000 Genomes
Project (29) and a pair of the simulated RNA-seq samples
from the previously generated type 4 pedigree (with IBS
genotypes as founders) (Supplementary Figure S5). The es-
timated IBD probabilities clearly separated a pair of RNA-
seq samples from second degree relatives (grandmother-
grandson) from samples from twenty unrelated individ-
uals from the same population. Samples from third de-
gree relatives (great-grandmother and great-grandson and
first cousins) had estimated IBD probabilities that were
marginally separated from those of unrelated individuals.
Samples from fourth degree relatives were indistinguishable
from those from unrelated individuals. We tested whether
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more stringent filtering of variants by removing variants
falling in segmental duplications would improve the sepa-
ration of third and fourth degree relatives from unrelated
individuals but this was not the case (Supplementary Fig-
ure S6). We conclude that IBD probabilities estimated from
RNA-seq data can be used to confidently identify samples
from up to second degree relatives and possibly flag samples
from third degree relatives within larger RNA-seq datasets
from unrelated individuals.

DISCUSSION

We have shown here that kinship detection based on es-
timates of identity by descent probabilities using RNA-
seq data is possible allowing the detection of up to second
degree relationships. In addition, we have shown that the
actual pedigrees can be fully reconstructed and, although
pedigree reconstruction works better for simple pedigrees,
some pedigrees with third degree relatives can also be recon-
structed. Furthermore, using simulations, we have shown
that the ability to detect kinship between individuals is not
limited by RNA-seq sequencing depth since it is still pos-
sible at a depth significantly below what is considered ac-
ceptable for gene expression analyses (usually 50M reads).
Furthermore, we have shown that samples from first de-
gree relatives can be distinguished from replicates and sam-
ples from unrelated individuals even with targeted RNA-seq
data. Reconstruction of full pedigrees requires higher se-
quencing depth but is still possible with at least 20M reads.

An issue that remains to be investigated in future studies
is whether gene expression data from other species would
provide similar results to the ones from humans. Genetic
variability among different individuals from a particular
species or a particular population could play an important
role in kinship detection with higher genetic diversity be-
tween individuals leading to better results.

In conclusion, we have shown here that RNA-seq data
can be used to identify samples from closely related indi-
viduals using estimated identity by descent probabilities cal-
culated from predicted genotypes at common variant posi-
tions. It turns out that the effect of calling genotypes cor-
rectly at the single nucleotide level due to allele-specific ex-
pression is not large enough to impede kinship detection
from IBD estimates. We therefore recommend the estima-
tion of IBD probabilities and visualization of the cluster-
ing of samples in ternary graphs or the use of pedigree re-
construction programs such as PRIMUS as a quality con-
trol step in studies that generate multiple RNA-seq samples
from related individuals and population based studies.
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